Section 17.1 Green's Theorem

- Line Integral Summary

Sketch of the Proof
Definitions, Closed Curves, Simple Curves and Contour Integrals
Orientation of the Curve
An Example, $\int_{\mathcal{C}} P d x+Q d y$ Notation
Green's Theorem
An Example, Verifying the Theorem
An Example, Sketch of the Proof, Verifying Rectangles
Additive Circulation Property
Proof, Rectilinear Regions
Applications
Work
Calculating Areas
Regions with Holes

1 Sketch of the Proof

Closed Curves and Contour Integrals

Let \mathcal{C} be a curve parametrized by \vec{r} on domain $[a, b]$.
\mathcal{C} is closed if \vec{r} begins and ends at the same point: $\vec{r}(a)=\vec{r}(b)$.
\mathcal{C} is simple if it does not intersect itself:
\vec{r} is one-to-one otherwise.
A line integral around a closed curve \mathcal{C} is called a contour integral, and denoted by a special symbol:

$$
\oint_{\mathcal{C}} f d s \text { or } \oint_{\mathcal{C}} \vec{F} \cdot d \vec{r}
$$

Note: $\oint_{\mathcal{C}} \vec{F} \cdot d \vec{r}=0$ if \vec{F} is conservative.

Not Closed but Simple

Not Closed, Not Simple

Closed but Not Simple

Closed and Simple

Orienting Closed Curves

Every simple closed curve \mathcal{C} in \mathbb{R}^{2} is the boundary of some region \mathcal{D}. We write $\mathcal{C}=\partial \mathcal{D}$. (Here the symbol ∂ means "boundary".)

Counterclockwise

Clockwise

There are two ways to orient a simple closed curve $\mathcal{C}=\partial \mathcal{D}$, called counterclockwise and clockwise, depending on whether \mathcal{D} is on your left or your right as you walk around \mathcal{C}.

Typically we use the counterclockwise orientation (as in the standard parametrization of the unit circle).

Example 1, Contour Integrals, $\int_{\mathcal{C}} P d x+Q d y$ Notation

Let \mathcal{C} be the circle of radius R with standard parametrization $x=R \cos (t), y=R \sin (t)$. Let $\vec{F}(x, y)=\langle y, x\rangle$

Then $\oint_{\mathcal{C}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}=\oint_{\mathcal{C}} P d x+Q d y$ is computed:

$$
\begin{aligned}
& \oint_{\mathcal{C}} x d y=\int_{0}^{2 \pi} R \cos (t)(R \cos (t)) d t=\left.\frac{R^{2}(\cos (t) \sin (t)+t)}{2}\right|_{0} ^{2 \pi}=\pi R^{2} \\
& \oint_{\mathcal{C}} y d x=\int_{0}^{2 \pi} R \sin (t)(-R \sin (t)) d t=\left.\frac{R^{2}(\cos (t) \sin (t)-t)}{2}\right|_{0} ^{2 \pi}=-\pi R^{2}
\end{aligned}
$$

Now

$$
\oint_{\mathcal{C}} x d y+\oint_{\mathcal{C}} y d x=\oint_{\mathcal{C}} x d y+y d x=0
$$

Note: if $f(x, y)=x y$, then $\nabla f(x, y)=\langle y, x\rangle$, we can also find this using Fundamental Theorem of Conservative Field.

Green's Theorem

If \mathcal{D} is a domain in \mathbb{R}^{2} whose boundary $\partial \mathcal{D}$ is a simple, closed curve with counterclockwise orientation, then

$$
\oint_{\partial D} P d x+Q d y=\iint_{\mathcal{D}}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
$$

If $\vec{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$, then $\operatorname{curl}(\vec{F})=\left\langle 0,0, Q_{x}-P_{y}\right\rangle$.
Writing $\operatorname{curl}_{z}(\vec{F})$ for $Q_{x}-P_{y}$, we can restate Green's Theorem as follows.

Green's Theorem (Alternative Notation)

If \mathcal{D} is a domain in \mathbb{R}^{2} whose boundary $\partial \mathcal{D}$ is a simple, closed curve with counterclockwise orientation, then

$$
\oint_{\partial \mathcal{D}} \vec{F} \cdot d \overrightarrow{\mathrm{r}}=\iint_{\mathcal{D}} \underbrace{\operatorname{curl}_{z}(\overrightarrow{\mathrm{~F}})}_{\operatorname{curl}(\overrightarrow{\mathrm{F}}) \cdot \overrightarrow{\mathrm{k}}} d A=\iint_{\mathcal{D}}(\nabla \times \overrightarrow{\mathrm{F}}) \cdot \overrightarrow{\mathrm{k}} d A .
$$

Green's Theorem

If $\partial \mathcal{D}$ is a simple, closed curve with counterclockwise orientation, then

$$
\oint_{\partial \mathcal{D}} P d x+Q d y=\iint_{\mathcal{D}}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Example 2: Let \mathcal{D} be the unit disk and $\mathcal{C}=\partial \mathcal{D}$ be the unit circle, with counterclockwise orientation. Verify Green's Theorem for $\vec{F}(x, y)=\left\langle x y^{2}, x\right\rangle$.
Solution:
Evaluating the line integral using the parametrization
$\overrightarrow{\mathrm{r}}(t)=\langle\cos (t), \sin (t)\rangle, \oint_{\partial D} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{r}}=\int_{0}^{2 \pi} \overbrace{-\cos (t) \sin ^{3}(t)}^{u=\sin (t), d u=\cos (t) d t}+\overbrace{\cos ^{2}(t)}^{=^{1+\cos (2 t)}} d t$
$=\int_{1}^{1}-u^{3} d u+\int_{0}^{2 \pi} \frac{1}{2} d t+\int_{0}^{2 \pi} \frac{\cos (2 t) d t}{2}=\pi$
Meanwhile, the right-hand-side of Green's Theorem gives
$\iint_{\mathcal{D}} \frac{\partial}{\partial x}(x)-\frac{\partial}{\partial y}\left(x y^{2}\right) d A=\quad \underbrace{\iint_{\mathcal{D}} 1-2 x y d A}$

$$
\int_{0}^{2 \pi} \int_{0}^{1}\left(1-2 r^{2} \cos (\theta) \sin (\theta)\right) r d r d \theta
$$

$=\int_{0}^{2 \pi} \int_{0}^{1}\left(r-r^{3} \sin (2 \theta)\right) d r d \theta=\pi$

Verifying Green's Theorem on Rectangles (Optional)

Let $\mathcal{D}=[a, b] \times[c, d]$, verify the Green's Theorem for vector fields $\vec{F}=\langle P, Q\rangle$ over region \mathcal{D} where \mathcal{C} is the boundary of \mathcal{D}, traversed counterclockwise.

\mathcal{C} consists of four smooth pieces: $\mathcal{C}=\mathcal{C}_{\mathbf{1}} \cup \mathcal{C}_{\mathbf{2}} \cup \mathcal{C}_{3} \cup \mathcal{C}_{4}$.

$$
\begin{aligned}
& \iint_{\mathcal{D}} \frac{\partial Q}{\partial x} d A=\int_{c}^{d} \int_{a}^{b} \frac{\partial Q}{\partial x} d x d y=\int_{c}^{d} Q(b, y)-Q(a, y) d y \\
= & \int_{c}^{d} Q(b, y) d y+\int_{d}^{c} Q(a, y) d y=\int_{\mathcal{C}_{2}} Q(x, y) d y+\int_{\mathcal{C}_{4}} Q(x, y) d y \\
= & \underbrace{\int_{\mathcal{C}_{2}} P(x, y) d x}_{\text {is zero (since } x(t)=b)}+\int_{\mathcal{C}_{2}} Q(x, y) d y+\underbrace{\int_{\mathcal{C}_{4}} P(x, y) d x}_{\text {is zero (since } x(t)=a)}+\int_{\mathcal{C}_{4}} Q(x, y) d y \\
= & \int_{\mathcal{C}_{2}} \vec{F} \cdot d \vec{r}+\int_{\mathcal{C}_{4}} \vec{F} \cdot d \vec{r}
\end{aligned}
$$

Verifying Green's Theorem on Rectangles - Cont.

Similarly,

$$
-\iint_{\mathcal{D}} \frac{\partial P}{\partial y} d A=\int_{\mathcal{C}_{1}} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{r}}+\int_{\mathcal{C}_{\mathbf{3}}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}
$$

Comparing the two results:

$$
\begin{aligned}
\iint_{\mathcal{D}} \frac{\partial Q}{\partial x} d A-\iint_{\mathcal{D}} \frac{\partial P}{\partial y} d A & =\int_{\mathcal{C}_{1}} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{r}}+\int_{\mathcal{C}_{2}} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{r}}+\int_{\mathcal{C}_{3}} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{r}}+\int_{\mathcal{C}_{4}} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{r}} \\
\iint_{\mathcal{D}}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A & =\oint_{\mathcal{C}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}
\end{aligned}
$$

Proof of Green's Theorem (Optional)

Green's Theorem

If $\partial \mathcal{D}$ is a simple, closed curve with counterclockwise orientation, then

$$
\oint_{\partial \mathcal{D}} P d x+Q d y=\iint_{\mathcal{D}}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Here is an overview:
(1) Case 1 (Rectangular Regions): We have already verified the theorem in the case when \mathcal{D} is a rectangle.
(2) Case 2 (Rectilinear Regions): Next we discuss the case when \mathcal{D} can be partitioned into rectangles. This case is a direct consequence of additive property on the next slide.
© Case 3 (General Regions): Last, we claim that any general region can be approximated by rectilinear regions.

Additive Circulation Property

If a domain \mathcal{D} is decomposed into non-overlapping domains \mathcal{D}_{1} and \mathcal{D}_{2} that intersect only on part of their boundaries, then

$$
\oint_{\partial \mathcal{D}} \vec{F} \cdot d \vec{r}=\oint_{\partial \mathcal{D}_{1}} \vec{F} \cdot d \vec{r}+\oint_{\partial \mathcal{D}_{2}} \vec{F} \cdot d \vec{r}
$$

$$
\begin{aligned}
& \oint_{\partial \mathcal{D}_{1}} \vec{F} \cdot d \vec{r}=\int_{\mathcal{C}_{\text {Bottom }}} \vec{F} \cdot d \vec{r}+\int_{\mathcal{C}_{\text {Middle- Westbound }}} \vec{F} \cdot d \vec{r} \\
& \oint_{\partial \mathcal{D}_{2}} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{r}}=\int_{\mathcal{C}_{\text {Top }}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}+\underbrace{\int_{\mathcal{C}_{\text {Midde }} \text { Eastbound }}}_{-\int_{\mathcal{C}_{\text {Middle }}-\text { Westbound }}} \stackrel{\overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}}{ } \cdot d \overrightarrow{\mathrm{r}} \text {. }
\end{aligned}
$$

Proof of Green's Theorem (Optional)

Case 2 (rectilinear regions):
If \mathcal{D} can be partitioned into rectangles $\mathcal{D}_{1}, \ldots, \mathcal{D}_{n}$, then we know that

$$
\iint_{\mathcal{D}} \nabla \times \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{k}} d A=\iint_{\mathcal{D}_{1}} \nabla \times \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{k}} d A+\cdots+\iint_{\mathcal{D}_{n}} \nabla \times \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{k}} d A .
$$

In fact, if we orient all boundaries counterclockwise, then

$$
\oint_{\partial \mathcal{D}} \vec{F} \cdot d \vec{r}=\oint_{\partial \mathcal{D}_{1}} \vec{F} \cdot d \vec{r}+\cdots+\oint_{\partial \mathcal{D}_{n}} \vec{F} \cdot d \vec{r} .
$$

Note that this is possible because the line integral on overlapping pieces of boundaries are additive inverse of each other.

Proof of Green's Theorem (Optional)

Case 3 (General regions):

By approximating the region by smaller and smaller rectangles we conclude that the double integrals of curl on the rectangles adds up to the line integral of the boundary.

2 Applications

Application Examples, Finding the Work

Green's Theorem

If $\partial \mathcal{D}$ is a simple, closed curve with counterclockwise orientation, then

$$
\oint_{\partial \mathcal{D}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}=\iint_{\mathcal{D}} \operatorname{curl}_{z}(\overrightarrow{\mathrm{~F}}) d A
$$

Example 3: Let $\vec{F}(x, y)=\left\langle 3 y-e^{\sin (x)}, 7 x+\sqrt{y^{4}+1}\right\rangle$.
Calculate the work done by $\overrightarrow{\mathrm{F}}$ on a particle moving once around the unit circle counterclockwise.

Solution: $\operatorname{curl}_{z}(\vec{F})=\frac{\partial}{\partial x}\left(7 x+\sqrt{y^{4}+1}\right)-\frac{\partial}{\partial y}\left(3 y-e^{\sin (x)}\right)=4$.
Therefore, by Green's Theorem,

$$
\oint_{\partial \mathcal{D}} \vec{F} \cdot d \vec{r}=\iint_{\mathcal{D}} 4 d A=(4)(\operatorname{area}(\mathcal{D}))=4 \pi
$$

Calculating Areas

Recall that the area of \mathcal{D} equals $\iint_{\mathcal{D}} 1 d A$.
Using Green's Theorem, the area of \mathcal{D} can be calculated using a vector line integral over a carefully chosen vector field.

Choose $\vec{F}=\langle P, Q\rangle$ so that $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1$.
(i) $P(x, y)=0$ and $Q(x, y)=x(\vec{F}(x, y)=\langle 0, x\rangle)$
(ii) $P(x, y)=-y$ and $Q(x, y)=0(\vec{F}(x, y)=\langle-y, 0\rangle)$
(iii) $P(x, y)=-\frac{1}{2} y$ and $Q(x, y)=\frac{1}{2} x\left(\vec{F}(x, y)=\left\langle-\frac{1}{2} y, \frac{1}{2} x\right\rangle\right)$

Area Formula via Line Integrals

$$
\operatorname{Area}(D)=\oint_{\partial \mathcal{D}} x d y=\oint_{\partial \mathcal{D}}-y d y=\frac{1}{2} \oint_{\partial \mathcal{D}} x d y-y d x
$$

Application Examples, Area

Example 4: Find the area contained inside the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Solution: The ellipse can be parametrized as

$$
\vec{r}(t)=\langle a \cos (t), b \sin (t)\rangle, \quad t \in[0,2 \pi] .
$$

Note that $\vec{r}(t)$ travels counterclockwise about the ellipse.

$$
\begin{aligned}
\text { Area }=\iint_{\mathcal{D}} d A & =\frac{1}{2} \int_{\mathcal{C}}\langle-y, x\rangle \cdot d \overrightarrow{\mathrm{r}} \\
& =\frac{1}{2} \int_{0}^{2 \pi}-(-b \sin (t))(a \sin (t))+(a \cos (t))(b \cos (t)) d t \\
& =\frac{a b}{2} \int_{0}^{2 \pi} 1 d t=\pi a b
\end{aligned}
$$

Application Examples, Area

Example 5: Find the area contained inside the simple closed curve defined by

$$
\vec{r}(t)=\langle t(t-1)(t-2), t(t-1)(t+1)\rangle
$$

for $0 \leq t \leq 1$.

Solution: The region inside is doubly simple, but it is difficult to impossible to express it in a form suitable for an iterated integral. Instead, use Green's theorem:

$$
\begin{aligned}
\text { Area }=\left|\oint_{\mathcal{C}} x d y\right| & =\left|\int_{0}^{1} x \frac{d y}{d t} d t\right| \\
& =\left|\int_{0}^{1}\left(t^{3}-3 t^{2}+2 t\right)\left(3 t^{2}-1\right) d t\right| \\
& =\left|\int_{0}^{1} 3 t^{5}-9 t^{4}+5 t^{3}+3 t^{2}-2 t d t\right|=\left|-\frac{1}{20}\right|
\end{aligned}
$$

The area is $1 / 20$. (The minus sign indicates that the original parametrization must have traversed the region clockwise.)

3 Regions with Holes

Regions with Holes

For a connected region with holes, the boundary consists of two or more closed curves. Every part of the boundary must be oriented to keep the region on the left.

- Outside boundary: counterclockwise.
- Inside boundary: clockwise.

Green's Theorem for Regions with Possible Holes

If \mathcal{D} is a domain in \mathbb{R}^{2} whose boundary consists of two or more closed curves $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$, each oriented so that \mathcal{D} is on its left, then

$$
\oint_{\mathcal{C}_{\mathbf{1}}} P d x+Q d y+\cdots+\oint_{\mathcal{C}_{n}} P d x+Q d y=\iint_{\mathcal{D}}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
$$

If \mathcal{D} is the region shown at left and $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ are the curves oriented as shown, then

$$
\underbrace{\partial \mathcal{D}=\mathcal{C}_{1}+\mathcal{C}_{2}-\mathcal{C}_{3} .}_{\text {This is a mnemonic. }}
$$

In this case $\iint_{\mathcal{D}}\left(Q_{x}-P_{y}\right) d A=\left[\oint_{\mathcal{C}_{1}}+\oint_{\mathcal{C}_{2}}-\oint_{\mathcal{C}_{3}}\right] P d x+Q d y$.

Domain With Holes Example

Example 6: Suppose that the region \mathcal{D} shown at right has area 8. Calculate $\oint_{\mathcal{C}_{1}} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y)=\left\langle x-y, x+y^{3}\right\rangle$.

Solution: By Green's Theorem,

$$
\oint_{\mathcal{C}_{1}} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{r}}-\oint_{\mathcal{C}_{2}} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{r}}=\iint_{\mathcal{D}} \operatorname{curl}_{z}(\overrightarrow{\mathrm{~F}}) d A=\iint_{\mathcal{D}} 2 d A=16 .
$$

Parametrizing \mathcal{C}_{2} as $\vec{r}(t)=\langle\cos (t), \sin (t)\rangle$,

$$
\oint_{\mathcal{C}_{\mathbf{2}}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}=\int_{0}^{2 \pi} \underbrace{1-\sin (t) \cos (t)+\sin ^{3}(t) \cos (t)}_{\text {Use u-sub } u=\sin (t) \text { or by symmetry }} d t=2 \pi
$$

Therefore, $\oint_{\mathcal{C}_{1}} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{r}}=\iint_{D} \operatorname{curl}_{z}(\overrightarrow{\mathrm{~F}}) d A+\oint_{\mathcal{C}_{2}} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{r}}=16+2 \pi$.

Winding Numbers (Optional)

Example 7: Calculate $\oint_{\mathcal{C}} \vec{F}_{\text {vor }} \cdot d \vec{r}$, where

$$
\overrightarrow{\mathrm{F}}_{\text {vor }}(x, y)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle .
$$

Solution: By Green's Theorem,

$$
\oint_{\mathcal{C}} \overrightarrow{\mathrm{F}}_{\text {vor }} \cdot d \overrightarrow{\mathrm{r}}-\oint_{\mathcal{C}_{R}} \overrightarrow{\mathrm{~F}}_{\text {vor }} \cdot d \overrightarrow{\mathrm{r}}=\iint_{\mathcal{D}} \operatorname{curl}\left(\overrightarrow{\mathrm{F}}_{\text {vor }}\right) d A
$$

Since $\operatorname{curl}_{z}\left(\vec{F}_{\text {vor }}\right)=0$, we conclude that

$$
\oint_{\mathcal{C}} \overrightarrow{\mathrm{F}}_{\text {vor }} d \overrightarrow{\mathrm{r}}=\oint_{\mathcal{C}_{R}} \overrightarrow{\mathrm{~F}}_{\text {vor }} \cdot d \overrightarrow{\mathrm{r}}=2 \pi
$$

If \mathcal{C} is a closed curve not passing through the origin, its winding number is defined as $\frac{1}{2 \pi} \oint_{\mathcal{C}} \vec{F}_{\text {vor }} \cdot d \vec{r}$.

Winding Numbers (Optional)

If \mathcal{C} is a closed curve not passing through the origin, its winding number (which is always an integer!) is defined as

$$
w(\mathcal{C})=\frac{1}{2 \pi} \oint_{\mathcal{C}} \overrightarrow{\mathrm{F}}_{\text {vor }} \cdot d \overrightarrow{\mathrm{r}}=\frac{1}{2 \pi} \oint_{\mathcal{C}} \frac{-y d x}{x^{2}+y^{2}}+\frac{x d y}{x^{2}+y^{2}}
$$

$$
w(\mathcal{C})=1
$$

$w(\mathcal{C})=-1$

$w(\mathcal{C})=0$

- If a clock is placed at the origin, and the minute hand moves so that it always points to $\vec{r}(t)$, then the number of clockwise revolutions of the hour hand during one trip around \mathcal{C} is $-w(\mathcal{C})$.
The widning number content was contributed by Prof. Martin.

