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1 Sketch of the Proof



Closed Curves and Contour Integrals

Let C be a curve parametrized by r⃗ on domain
[a, b].

C is closed if r⃗ begins and ends at the same point:
r⃗ (a) = r⃗ (b).

C is simple if it does not intersect itself:
r⃗ is one-to-one otherwise.

A line integral around a closed curve C is called a
contour integral, and denoted by a special symbol:

˛
C
f ds or

‰
C

F⃗ · d r⃗

Note:
‰
C

F⃗ · d r⃗ = 0 if F⃗ is conservative.

r⃗(a)

r⃗(b)

Not Closed but Simple

r⃗(a)

r⃗(b)

Not Closed, Not Simple

r⃗(a)=

r⃗(b)=

Closed but Not Simple

Closed and Simple



Orienting Closed Curves

Every simple closed curve C in R2 is the boundary of some region D. We
write C = ∂D. (Here the symbol ∂ means “boundary”.)

D

C = ∂D

Counterclockwise

D

C = ∂D

Clockwise

There are two ways to orient a simple closed curve C = ∂D, called
counterclockwise and clockwise, depending on whether D is on your
left or your right as you walk around C.

Typically we use the counterclockwise orientation (as in the standard
parametrization of the unit circle).



Example 1, Contour Integrals,
´
C Pdx + Qdy

Notation
Let C be the circle of radius R with standard parametrization
x = R cos(t), y = R sin(t)︸ ︷︷ ︸

r⃗(t)

. Let F⃗(x , y) = ⟨y , x⟩

Then
‰
C

F⃗ · d r⃗ =
‰
C
Pdx + Qdy is computed:

‰
C
x dy =

ˆ 2π

0
R cos(t)(R cos(t)) dt =

R2(cos(t) sin(t) + t)

2

∣∣∣2π
0

= πR2

‰
C
y dx =

ˆ 2π

0
R sin(t)(−R sin(t)) dt =

R2(cos(t) sin(t)− t)

2

∣∣∣2π
0

= −πR2

Now ‰
C
x dy +

‰
C
y dx =

‰
C
x dy + y dx = 0

Note: if f (x , y) = xy , then ∇f (x , y) = ⟨y , x⟩, we can also find this using
Fundamental Theorem of Conservative Field.



Green’s Theorem
If D is a domain in R2 whose boundary ∂D is a simple, closed curve with
counterclockwise orientation, then

‰
∂D

P dx + Q dy =

¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

If F⃗(x , y) = ⟨P(x , y),Q(x , y)⟩, then curl(F⃗) = ⟨0, 0,Qx − Py ⟩.
Writing curlz(F⃗) for Qx − Py , we can restate Green’s Theorem as follows.

Green’s Theorem (Alternative Notation)
If D is a domain in R2 whose boundary ∂D is a simple, closed curve with
counterclockwise orientation, then

‰
∂D

F⃗ · d r⃗ =
¨

D
curlz(F⃗)︸ ︷︷ ︸
curl(F⃗)·⃗k

dA =

¨
D
(∇× F⃗) · k⃗ dA.



Green’s Theorem
If ∂D is a simple, closed curve with counterclockwise orientation, then

‰
∂D

P dx + Q dy =

¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA

Example 2: Let D be the unit disk and C = ∂D be the unit circle, with
counterclockwise orientation. Verify Green’s Theorem for
F⃗(x , y) =

〈
xy2, x

〉
.

Solution:
Evaluating the line integral using the parametrization

r⃗ (t) = ⟨cos(t), sin(t)⟩,
‰
∂D

F⃗ · d r⃗ =
ˆ 2π

0

u=sin(t), du=cos(t)dt︷ ︸︸ ︷
− cos(t) sin3(t) +

= 1+cos(2t)
2︷ ︸︸ ︷

cos2(t) dt

=

ˆ 1

1
−u3du +

ˆ 2π

0

1
2
dt +

ˆ 2π

0

cos(2t)dt
2

= π

Meanwhile, the right-hand-side of Green’s Theorem gives¨
D

∂

∂x
(x)− ∂

∂y

(
xy2) dA =

¨
D

1 − 2xy dA︸ ︷︷ ︸´ 2π
0
´ 1
0 (1−2r2 cos(θ) sin(θ))r dr dθ

=

ˆ 2π

0

ˆ 1

0

(
r − r3 sin(2θ)

)
dr dθ = π



Verifying Green’s Theorem on Rectangles
(Optional)

Let D = [a, b]× [c , d ], verify
the Green’s Theorem for
vector fields F⃗ = ⟨P, Q⟩ over
region D where C is the
boundary of D, traversed
counterclockwise.

C1

C3

C4 C2

(a, c)

(a, d)

(b, c)

(b, d)

C consists of four smooth pieces: C = C1 ∪ C2 ∪ C3 ∪ C4.

=

¨
D

∂Q

∂x
dA =

ˆ d

c

ˆ b

a

∂Q

∂x
dx dy =

ˆ d

c

Q(b, y)− Q(a, y) dy

=

ˆ d

c

Q(b, y) dy +

ˆ c

d

Q(a, y) dy =

ˆ
C2

Q(x , y) dy +

ˆ
C4

Q(x , y) dy

=

ˆ
C2

P(x , y) dx︸ ︷︷ ︸
is zero (since x(t) = b)

+

ˆ
C2

Q(x , y) dy +

ˆ
C4

P(x , y) dx︸ ︷︷ ︸
is zero (since x(t) = a)

+

ˆ
C4

Q(x , y) dy

=

ˆ
C2

F⃗ · d r⃗ +
ˆ
C4

F⃗ · d r⃗



Verifying Green’s Theorem on Rectangles - Cont.

Similarly,

=−
¨

D

∂P

∂y
dA =

ˆ
C1

F⃗ · d r⃗ +

ˆ
C3

F⃗ · d r⃗

Comparing the two results:

¨
D

∂Q

∂x
dA−

¨
D

∂P

∂y
dA =

ˆ
C1

F⃗ · d r⃗ +

ˆ
C2

F⃗ · d r⃗ +

ˆ
C3

F⃗ · d r⃗ +

ˆ
C4

F⃗ · d r⃗

¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

‰
C

F⃗ · d r⃗

✓



Proof of Green’s Theorem (Optional)

Green’s Theorem
If ∂D is a simple, closed curve with counterclockwise orientation, then

‰
∂D

P dx + Q dy =

¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA

Here is an overview:
1 Case 1 (Rectangular Regions): We have already verified the theorem

in the case when D is a rectangle.
2 Case 2 (Rectilinear Regions): Next we discuss the case when D can

be partitioned into rectangles . This case is a direct consequence of
additive property on the next slide.

3 Case 3 (General Regions): Last, we claim that any general region
can be approximated by rectilinear regions.



Additive Circulation Property
If a domain D is decomposed into non-overlapping domains D1 and D2
that intersect only on part of their boundaries, then

‰
∂D

F⃗ · d r⃗ =
‰
∂D1

F⃗ · d r⃗ +
‰
∂D2

F⃗ · d r⃗

D

∂D

= D1

CBottom

CMiddle-Westbound

+ D2

CTop

CMiddle-Eastbound

‰
∂D1

F⃗ · d r⃗ =
ˆ
CBottom

F⃗ · d r⃗ +
ˆ
CMiddle−Westbound

F⃗ · d r⃗

‰
∂D2

F⃗ · d r⃗ =
ˆ
CTop

F⃗ · d r⃗ +
ˆ
CMiddle−Eastbound

F⃗ · d r⃗︸ ︷︷ ︸
−
´
CMiddle−Westbound

F⃗·d r⃗



Proof of Green’s Theorem (Optional)
Case 2 (rectilinear regions):
If D can be partitioned into rectangles D1, . . . ,Dn, then we know that
¨

D
∇× F⃗ · k⃗ dA =

¨
D1

∇× F⃗ · k⃗ dA + · · · +

¨
Dn

∇× F⃗ · k⃗ dA.

In fact, if we orient all boundaries counterclockwise, then
‰
∂D

F⃗ · d r⃗ =

‰
∂D1

F⃗ · d r⃗ + · · · +

‰
∂Dn

F⃗ · d r⃗.

D D2

D1

D3

Jeremy Martin has contributed to this slide.

Note that this is possible because the line integral on overlapping
pieces of boundaries are additive inverse of each other.



Proof of Green’s Theorem (Optional)

Case 3 (General regions):

C

D

By approximating the region by smaller and smaller rectangles we
conclude that the double integrals of curl on the rectangles adds up to
the line integral of the boundary.



2 Applications



Application Examples, Finding the Work

Green’s Theorem
If ∂D is a simple, closed curve with counterclockwise orientation, then

‰
∂D

F⃗ · d r⃗ =
¨

D
curlz(F⃗) dA

Example 3: Let F⃗(x , y) =
〈
3y − esin(x), 7x +

√
y4 + 1

〉
.

Calculate the work done by F⃗ on a particle moving once around the unit
circle counterclockwise.

Solution: curlz(F⃗) =
∂

∂x
(7x +

√
y4 + 1)− ∂

∂y
(3y − esin(x)) = 4.

Therefore, by Green’s Theorem,
‰
∂D

F⃗ · d r⃗ =
¨

D
4 dA = (4)(area(D)) = 4π.



Calculating Areas

Recall that the area of D equals
¨

D
1 dA.

Using Green’s Theorem, the area of D can be calculated using a vector
line integral over a carefully chosen vector field.

Choose F⃗ = ⟨P,Q⟩ so that
∂Q

∂x
− ∂P

∂y
= 1.

(i) P(x , y) = 0 and Q(x , y) = x (F⃗(x , y) = ⟨0, x⟩)

(ii) P(x , y) = −y and Q(x , y) = 0 (F⃗(x , y) = ⟨−y , 0⟩)

(iii) P(x , y) = − 1
2y and Q(x , y) = 1

2x (F⃗(x , y) =
〈
− 1

2y ,
1
2x

〉
)

Area Formula via Line Integrals

Area(D) =

‰
∂D

x dy =

‰
∂D

−y dy =
1
2

‰
∂D

x dy − y dx



Application Examples, Area

Example 4: Find the area contained inside the ellipse
x2

a2 +
y2

b2 = 1.

Solution: The ellipse can be parametrized as

r⃗ (t) = ⟨a cos(t), b sin(t)⟩ , t ∈ [0, 2π].

Note that r⃗ (t) travels counterclockwise about the ellipse.

Area =

¨
D
dA =

1
2

ˆ
C
⟨−y , x⟩ · d r⃗

=
1
2

ˆ 2π

0
−(−b sin(t))(a sin(t)) + (a cos(t))(b cos(t))dt

=
ab

2

ˆ 2π

0
1 dt = πab



Application Examples, Area

Example 5: Find the area contained inside the
simple closed curve defined by

r⃗(t) = ⟨t(t − 1)(t − 2), t(t − 1)(t + 1)⟩

for 0 ≤ t ≤ 1.

0.1 0.2 0.3

-0.1

-0.2

-0.3

Solution: The region inside is doubly simple, but it is difficult to impossible to
express it in a form suitable for an iterated integral. Instead, use Green’s
theorem:

Area =

∣∣∣∣˛
C
x dy

∣∣∣∣ = ∣∣∣∣ˆ 1

0
x
dy

dt
dt

∣∣∣∣
=

∣∣∣∣ˆ 1

0
(t3 − 3t2 + 2t)(3t2 − 1) dt

∣∣∣∣
=

∣∣∣∣ˆ 1

0
3t5 − 9t4 + 5t3 + 3t2 − 2t dt

∣∣∣∣ = ∣∣∣∣− 1
20

∣∣∣∣ .
The area is 1/20. (The minus sign indicates that the original parametrization
must have traversed the region clockwise.)



3 Regions with Holes



Regions with Holes
For a connected region with holes, the boundary consists of two or more
closed curves. Every part of the boundary must be oriented to keep the
region on the left.

Outside boundary: counterclockwise.
Inside boundary: clockwise.

D

∂D

=
D1

∂D1

D2

∂D2

D1

∂D1

D2

∂D2

D1

∂D1

D2

∂D2

Video

https://mediahub.ku.edu/media/t/1_aqack6du


Green’s Theorem for Regions with Possible Holes
If D is a domain in R2 whose boundary consists of two or more closed
curves C1, . . . , Cn, each oriented so that D is on its left, then
˛
C1

P dx + Q dy + · · ·+
˛
Cn

P dx + Q dy =

¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

C1

C2 C3

D

If D is the region shown at left and
C1, C2, C3 are the curves oriented as
shown, then

∂D = C1 + C2 −C3.︸ ︷︷ ︸
This is a mnemonic.

In this case
¨

D
(Qx − Py ) dA =

[˛
C1

+

˛
C2

−
˛
C3

]
P dx + Q dy .



Domain With Holes Example

Example 6: Suppose that the region D
shown at right has area 8. Calculate‰
C1

F⃗ · d r⃗, where F⃗(x , y) =
〈
x − y , x + y3

〉
.

x

y

1

D

C1

C2

Solution: By Green’s Theorem,
‰
C1

F⃗ · d r⃗ −
‰
C2

F⃗ · d r⃗ =
¨

D
curlz(F⃗) dA =

¨
D

2 dA = 16.

Parametrizing C2 as r⃗ (t) = ⟨cos(t), sin(t)⟩,
‰
C2

F⃗ · d r⃗ =
ˆ 2π

0
1− sin(t) cos(t) + sin3(t) cos(t)︸ ︷︷ ︸

Use u-sub u=sin(t) or by symmetry

dt = 2π.

Therefore,
‰
C1

F⃗ · d r⃗ =
¨

D

curlz(F⃗) dA+

‰
C2

F⃗ · d r⃗ = 16 + 2π. Video

https://mediahub.ku.edu/media/t/1_29lu1rkw


Winding Numbers (Optional)

Example 7: Calculate
‰
C

F⃗vor · d r⃗, where

F⃗vor(x , y) =

〈
−y

x2 + y2 ,
x

x2 + y2

〉
. x

y

R

D

C

CR

Solution: By Green’s Theorem,
‰
C

F⃗vor · d r⃗ −
‰
CR

F⃗vor · d r⃗ =
¨

D
curlz(F⃗vor) dA

Since curlz(F⃗vor) = 0, we conclude that
‰
C

F⃗vor d r⃗ =
‰
CR

F⃗vor · d r⃗ = 2π.

If C is a closed curve not passing through the origin, its winding number

is defined as
1
2π

‰
C

F⃗vor · d r⃗.



Winding Numbers (Optional)
If C is a closed curve not passing through the origin, its winding number
(which is always an integer!) is defined as

w(C) = 1
2π

‰
C

F⃗vor · d r⃗ =
1
2π

‰
C

−y dx

x2 + y2 +
x dy

x2 + y2 .

w(C) = 1 w(C) = −1 w(C) = 0

If a clock is placed at the origin, and the minute hand moves so that
it always points to r⃗ (t), then the number of clockwise revolutions of
the hour hand during one trip around C is −w(C).

The widning number content was contributed by Prof. Martin.
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